“Mapping the digital future”

Hungarian Society and the Internet

2004

2004
2002
2003
2004
2005
2006
2007
2008
2009
2010

2004

ITHAKA-ITTK-TÁRKI
World Internet Project is an international research program (for details see page 66).

The program is conducted in Hungary by BUTE Information Society and Trend Research Institute (www.ittk.hu), Social Research Centre Inc. (TÁRKI, www.tarki.hu), and ELTE-ITHAKA (www.ithaka.hu).

The research program is lead by Dr. Tibor Dessewffy and Dr. Zoltán Fábián.

The Hungarian survey was supported by the Ministry of Informatics and Communications, ORTT (National Radio and Television Commission) and Axelero.

The report was written by:

Tibor Dessewffy
Zoltán Fábián
Anna Galácz
Zsófia Rét
András Rigler
Bence Ságvári

This report is published by Infonia Foundation.
Editor: László Z. Karvalics
Contents

Introduction ..4
Highlights ...7
Computers in households ...12
 Diffusion of home computers ...12
 Social factors determining Internet access ...13
 Intentions to buy a PC ..15
Mobile telephone access and use ..16
 Mobile telephone use ..18
Standard phone penetration ..19
Other info-communication and multimedia tools ..21
Internet access at home ...22
 Home Internet access - types and expenses ...24
Computer usage ...25
 Penetration, diffusion ..25
 Scenes of PC usage and computer activities ...26
 PC-usage competences ..28
Internet usage ...29
 Scenes of Internet usage ...33
 Forms and functions of Internet usage ...36
Non users: why not online? ..39
Public opinion about the Internet ...41
Internet and other media ..44
Internet at work ...46
E-mailing, opinions about e-mail ..49
Electronic commerce from the consumers’ point of view ..52
Security and Internet use ..57
 Security risks ...57
 Precautionary measures ..58
Internet and social connections ...60
Family life and Internet usage at home ..62
The International World Internet Project ...66
Sampling and weighing methods ...67
Presentation of participating institutes ...69
Introduction

The slowly falling avalanche

Another year has passed by in the Hungarian Internet-world. 2004 was characterized by the breakthrough of broadband technologies, there has been a spectacular leap in the diffusion of technologies ameliorating the quality of Internet usage (including Wi-Fi). And though the already usual site-visiting records have been reported („there has never been as many people online as during the Olympic Games”…), and the news spread during the last quarter of the year about the increase in online advertising costs made the Hungarian peers of online content producing industry optimistic, it is still not evident how to characterize this year from the aspect of the Hungarian society. Should we think about these phenomena as a breakthrough, or should we rather consider this year as that of unobservable structural reformations preceding a future crumble of the online avalanche? Is there a change in how people perceive the Internet, did the inner composition and efficiency of online activities change? Did villages start joining up to cities in the number of internet users? Are there any new, interesting, phenomena suitable for future analysis?

You are just about to read the forth Hungarian WIP (World Internet Project) survey report, the newest results of a research which aims at reporting deep structural changes: the basic features that characterize the diffusion of Internet and its culture in Hungary.

WIP differs from other Internet-related researches in four principal areas. First, it foregrounds the social impacts of the diffusion of the Internet. Hence, besides examining the degree of diffusion (similarly to other projects), WIP aspires to provide a deeper interpretation of the impacts of the Internet by incorporating attitude, value and behavioral variables to the analysis. Another important feature is that WIP extends its survey beyond users and examines non-users as well. This allows for the examination of passages between the two groups, and makes it possible to provide a wide comparison between their attitude and behavior which may lead us to reveal the reasons of non-users for not being online. Another distinguishing characteristic of WIP is that it conducts a longitudinal research, making it possible to observe trends and tracing continuous changes instead of only capturing a snapshot. And last but not least, the possibly more important feature of WIP is that it provides international, comparative studies, so that the social phenomena connected to the Internet can be observed worldwide.
While we are objective and detached in studying the diffusion of the Internet and its social impacts, we are eager to see the survey’s results every year. One thing that we can be sure about every year is that betting to the diffusion of the Internet is a guarantee to win. If we have enough time, i.e. 20-30 years to wait, we can certainly observe a wide diffusion of this info-communication tool. Hence, it is not the direction of the process but its speed, depth and quality that have to be investigated. The Hungarian „version” of the World Internet Project started at a very good point at this respect: in 2001, when the first research was conducted, Internet belonged to a few privileged: only 17% of the population had Internet access this time. Ever since we have been hoping for being able to report a landmark and a sudden rise in the number of users. However, every year we find ourselves disappointed in this hope – as it is the case this year. 29% of Hungarian population had a positive answer to the question whether /s/he uses the Internet, up from 25% last year, which is a slow, constant growth, but cannot be called a breakthrough. The slowness of diffusion becomes even more alarming if we consider that computer penetration in households is also slowing down: proportion of households with a computer remained constant from last year (32%).

However, behind the predictably unlively, dynamic-less diffusion trends we can see signs of several interesting changes taking shape.

The probably most important finding of WIP studies so far was to note that besides material circumstances, there are also cultural, mental factors that play a role in hindering the diffusion of the Internet. We experienced a constant decrease in the number of those who did not go online because it „costs too much”, and a radical, surprising growth in the proportion of non-users who said they were „not interested in” or „did not need” the Internet. The trend is still observable this year, and these immaterial reasons are already the most widespread among non-users.

Another strengthening tendency revealed in our studies is that of „digitally parted Hungary”. This expression refers to the drastic digital division observed in Hungarian society among the dimensions of age and qualification. (An obvious explanation can be drawn from the Sulinet program which provides Internet access at schools: while 70% of the population in the Sulinet generation, i.e. 25 years and under uses the Internet, this figure is only 20% in the older generation. It is also important to note that proportion of users is extremely low among the population above 60 years: not more than 2%.) Moreover, the depth of the digital divide in Hungary did not change principally from last year.

The big question to answer is which factor we should have recourse to when searching for the essential points: what determines dominant tendencies and the direction of changes? For instance, the fact that 28% of Hungarian population have a mobile phone suitable for connecting
to the Internet may have serious, but not anticipated consequences. It is difficult to predict how this technological particularity might reshape Internet-using habits in the following years. Will slowly falling subscription prices finally reach a favorable level which may lead to the long-awaited change?

Many things are changing about the Internet, but what remained unchanged is our conviction that understanding information society is one of the greatest intellectual challenges in our days. The World Internet Project database and research studies are intended to support this process of interpretation.

Tibor Dessewffy - Zoltán Fábián - László Z. Karvalics
Highlights

Personal computers and other info-communication tools in Hungarian households

- 32% of Hungarian households own at least one computer in 2004; this proportion remained stable from 2003.
- The rising trend in the diffusion of home computers, relatively slow until the end of the 90’s but speeding up after, seems to come to a stop this year: while the proportion of households with a computer was rising by 4-5 percents between 1998 and 2003, the increase was not higher than 1 percent in 2004.
- According to 2004 year’s results, in 68% of Hungarian households there is at least one person who owns a mobile phone.
- 67% of respondents has a mobile phone for his/her personal use.
- Due to the gradual decrease in the number of standard telephone lines over the past years, only 68% of Hungarian households has a standard telephone line in 2004. In other figures it means that among the population over 14 years, 67% lives in a household with a phone line.
- Among examined info-communication tools, color television proved to be the most widespread: it can be found in almost every household. Two thirds of households dispose of satellite or cable for receiving cable television transmission. 56% of households has videotape, and 38% hi-fi equipment.
- There has been a significant increase in the proportion of households with a DVD player: up to 17% from last year’s 10%.

Internet at home

- In 2004 14% of Hungarian households has Internet access. Projected to the population over 14 years, this makes up 18%.
- Most households with internet access (40%) still connect to online service by telephone modem. However, the pushing of broadband technologies is already visible: while there has been a 10% decrease of modem connections and 2% decrease of ISDN according to last years’ measures, the proportion of ASDL connections has grown from 14 to 24 percents, and the number of households connecting by cable television or other broadband cables is also increasing.
Computer and Internet use

- 40% of Hungarian population over 14 years use a personal computer. Compared to 39% measured last year, the increase is only one percent.
- In 2004, 29% of the population over 14 years use the Internet, but the number of those who use it on a regular basis, i.e. at least once a week, is only 21%.
- Using the Internet at home is gaining more and more place, as already recorded in last year’s report. In 2004 more than half of Internet users goes online at home, what makes home the most important scene of going online.
- As in preceding years, most popular online activities are sending and receiving e-mails, searching for information about products or services and reading of online newspapers and magazines.
- 21% of Internet users download games, pictures or music on a weekly basis.
- Public institutions’ sites are also popular among Internet users: 18% of them visit such sites at least once a week, while other 34 percent do it at least once in a month.
- Another frequent online activity is searching for information about different educational forms or downloading educational material.

Digital division in the Hungarian society

- Appropriate indices show that digital division in Hungary decreased over the last four years, but it is still very significant.
- The biggest division is recorded in the dimension of qualification: the index value is only 12% and it did not increase at all from last year. Other factors that play an important role in digital division are age and, to a lesser but still significant extent, income.
- There is no significant division among Internet users according to gender: women’s indices of Internet access and use almost equal the average.

Reasons for not being online

- The number of non-users who refer to material reasons for not being online is constantly decreasing, while lack of motivation is spreading. The answer “not having a PC”, which used to be the most frequent reason of non-users, already started to decline last year, and
in 2004 only 21% cited it. In parallel, proportions of answers like “not needing it” (46%) and “not interested” (25%) are increasing.

Opinions about the Internet

- Hungarian population has a positive attitude towards technological innovations. 65% of people who expressed their opinion said that new info-communication tools like mobile phone or Internet make the world a better place, while only 7% think the opposite. 28% of respondents said that diffusion of info-communication tools do not change the state of the world.

- Both users and non-users agree that children have access to contents that are not suitable for them via the Internet. Furthermore, both groups think that users can save time with Internet; this opinion is more widespread among experienced users. It is an interesting issue that non-users agree much more with the opinion that Internet is dangerous to personal data than experienced users. Although users rather agree with the opinion that not having access to the Internet is a disadvantage, this level of agreement is not very high, and non-users agree even less.

- Hungarian Internet users are generally satisfied with Internet, their opinions became more and more positive over the last years: in 2004, 36% of users are totally satisfied with the web.

- The biggest user satisfaction is recorded about the quantity of information and the communication possibilities of the Internet. Connection speed continues to be the major source of dissatisfaction, but even this field shows an amelioration according to past years.

Internet at work, distance working

- The most popular online activity of people who use Internet at work is business e-mailing: 68% of users do it on a weekly basis. A slightly lower proportion of employees, 58% uses Internet for browsing web sites for business purposes. Personal use of the Internet at work is less frequent, but not rare: 31% of the employees use the Internet for personal e-mail, and 37% for personal browsing.

- 13% of employees said that their employers monitor strictly their Internet use, while 9% reported similar monitoring of e-mail. A slightly higher proportion of employees said that they encountered occasional controls, but the vast majority of employees are not monitored at all in their Internet and e-mail use at work.
• 29 percent of employees have used the Internet for business purposes outside their workplace in the last three months, thus performed any kind of distance working.

Electronic commerce
• 84% of Hungarian Internet users have never ordered any product or service via the Internet, and the proportion of those who did it in the last three months is only 8%.
• In more than two thirds of transaction products are paid for by traditional means on delivery, the proportion of payments by bank card or credit card remained stable (24%).

Security and Internet use
• The most typical problems about Internet use are virus and spam: 35% of Internet users got a virus, and 46% got spam last year. On the other hand, none of the respondents reported to be concerned in a credit card fraud, and the number of abuses of personal data is also insignificant.
• The most widespread way of security precautions is by anti-virus software: 45% of users have installed one last year, while 54% have updated their virus protector. On the other hand, only 28% installed a firewall (either hardware or software), and 27 percent used any kind of online certification.

Internet and social connections
• This year’s survey shows that about one third of Hungarian Internet users search for new acquaintances via the web: 31% affirm having at least one friend whom they acquainted online, while 28% have more than one such friends.
• Internet is most helpful while communicating with people working in the same field: 21% of users say they communicate more or much more with people of this group since the use the Internet. Less users expressed this opinion about other groups, such as their family, friends or people with the same hobby, and even less about political or religious groups.

Internet and family
• Similarly to the last three years’ results, we found that Internet does not alter family life seriously. The vast majority (91%) of those who have Internet access at home think that members of their family spend about the same amount of time together since they can go online at home, and only 6% reported a decrease in the time spent with the family.
Parents think that the web does not mean any significant danger neither for their children’s social lives, nor does for their school grades.
Computers in households

Diffusion of home computers

There is at least one computer in almost one third of Hungarian households in 2004. This proportion did not change significantly from the 2003 survey. The proportion of households with one computer is still 27%, while the number of households without a computer decreased by one percent, and the number of households with more than one computer has increased by one percent.

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households without a computer</td>
<td>78</td>
<td>75</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>One computer</td>
<td>19</td>
<td>22</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>More computers</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>All</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Case number (N=)</td>
<td>5032</td>
<td>3763</td>
<td>5261</td>
<td>3937</td>
</tr>
</tbody>
</table>

*Source: WIP 2004 survey, TÁRKI
#Note: overall number of computers and portable computers (laptop, notebook). Palmtops and game consoles are not included.

The increase in the number of home computers, which was slow until the end of the 90’s, and fastened gradually until this year seems to come to a stop: while the proportion of households with a computer has grown constantly by 4-5% between 1998 and 2003, the increase is not higher than one percent in 2004.
On the basis of the data registered between 1998 and 2003, we predicted a higher proportion of PC penetration for 2004 than the actual rates. Calculating with a linear continuation of the trend, the proportion should have reached 34%, while an eventual (exponential) rise of the trend should have yield a result of 39%. However, the standstill of the rising trend resulted in a rate lower than expected: we registered only 32% of PC penetration this year.

With a similar method, but taking this year’s measures into account, the proportion of households with a computer can be predicted to fall between 37 and 40 percents by 2005.

Computer penetration in households, prediction for 2005

![Graph showing PC penetration and trend predictions](image)

*Predicted value calculated on the basis of the trend

Social factors determining Internet access

The households’ possession of a computer is closely related to the households’ socio-demographic indices. PC penetration grows with the urbanization level of the settlement: households in Budapest show the biggest proportion of PC penetration (40%), while heading from county towns and other big cities to smaller settlements, proportion of households with a PC decreases gradually. It is also in Budapest that we find the biggest proportion of households with more than one computer (9%), while the least of these households can be found in villages.
As observed in past years, PC penetration still proves to be closely related to income. In the lowest income quintile only one household out of twenty has a computer, while 63% of households in the top quintile has one. The proportion of households with two or more computers is salient in this group: while this rate is only 3% in the fourth income quintile, we find five times as much such households in the top quintile.

PC penetration is also influenced by the age and educational level of the head of the family. Households with a head between 40-49 years are the most likely to have a computer, and penetration rates decrease in both younger and older age groups. Educational level of the head of the family is in direct proportionality with computer ownership: the more educated the head of the family is, the more likely is that there is a computer in the household.
Number of computers in households, according to the age group of the head of the family (%)

Number of computers in households, according to the qualification of the head of the family (%)

Intentions to buy a PC

6.5% of households without a computer expressed their intention to buy one in the following 12 months. Projected to the overall number of households this is an increase of 4%. The number of families planning to buy a computer in 12 months following the autumn of 2004 is 180-200 thousands.

Similarly to computer ownership, the intention of buying one is related to demographic and economic features of the household. The most important feature is the household’s income: proportion of households which do not own a computer yet but are planning to buy one next year is 17% in the top income quintile, but less than half of it in the following quintile.
Educational level of the head also has an impact on the intention of buying a computer, but to a lesser extent: 10% of households where the head has completed higher education plans to buy a PC, but this number is only 3% among households where the head only completed elementary school.

Households intending to buy a computer would spend an average of 73,000 Forints on it. Naturally, this measure is also connected to other features of the household: households with a big income or with a highly educated head are more likely to spend more money on a computer. From these data we can conclude that this year’s 32% of PC penetration will not grow higher than 36% next year. This figure is slightly lower than the one estimated on the pure base of diffusion trends. Also considering the relatively small amount of money people intend to spend on a computer — we cannot be sure that they will be able to buy the computer they want at such a low price —, the actual speed of the diffusion may well be even lower. Moreover, it does not seem likely that social differences in home computer access could reduce in a short term, since the social groups which are more inclined to buy a computer are exactly the same groups where computer penetration is already above the average.

Mobile telephone access and use

The 2004 survey’s result show that in 68% of the Hungarian households at least one person owns a mobile phone. As in the case of computers, mobile phone penetration in households strongly depends on income: while the penetration rate is 95% in households belonging to the top income quintile, this figure is only 31% in the lowest quintile.
Mobile phone access is influenced by other features of the household, but to a much lesser extent. Such factors are type of settlement (60% in villages, while 70-72% in other types of settlements), age group of the head of the household (38% in the group over 60 years, while over 80% in younger age groups), and educational level (43% in households whose head has an elementary school degree, while 90% in households with a head who has completed higher education).

67% of respondents has a mobile phone for personal use. Similarly to the level of households, personal mobile phone ownership is also closely related to income: 53% of people of the lowest quintile in personal income rate have a mobile phone, while this number is 87% in the top quintile. Besides this factor, personal mobile phone access is also influenced by age, gender and educational level.

![Proportion of mobile phone owners according to personal income (%)](chart)

Among respondents who own a mobile phone, 22% has phone subscription, while the vast majority (75%) has a rechargeable card. The remaining 3% is made up of people who own more than one mobile phone, among which there are subscription and mobile card. The proportion of those who have subscription to mobile telephone is higher among people working at a leading post (management 46%, intermediate leaders 39%), intellectual freelancers (52%) and other independents (64%).

42% of mobile phone owners has a phone suitable for WAP. The most important factor that determines WAP usage is age: while the number of people who own a WAP-compatible phone is over 60% in the youngest age groups, only 10% of people over 60 years have such phones.
Mobile telephone use

As a general observation we can note that people do not exploit all the possibilities provided by mobile phone. This is particularly true for WAP: more than two thirds of those who own a WAP-compatible mobile phone never use this function, and only ten% of them can be considered as a regular user (who uses it on a weekly basis). The number of people who do not use SMS is smaller: 18% of the respondents affirmed that they never send or receive SMS, and 12% said they were doing it at most once in a month. 60% of people who own a mobile phone for personal use can be considered as regular SMS users.

![Frequency of WAP and SMS usage (%)](image)

*In relation to people with a WAP-compatible phone
**In relation to people with a mobile phone

While there are no significant differences among social layers according to WAP usage, SMS is most popular among young people: 50% of the age group below 29 years said they send and receive SMS daily, and other 30% do it more than once a week. Among young people students are even more prominent, since 58% of them send and receive SMS every day.
Standard phone penetration

Although in parallel to mobile phones gaining space, standard telephone lines gradually lose their importance, the simplest and less expensive way of connecting to the Internet at home is still by dial-up modem connection. Hence standard phone line penetration is still of crucial importance when examining Internet access.

Due to the continuous decrease in telephone lines over years, only 68% of Hungarian households have a standard phone line. In other words, 67% of the population over 14 years lives in a household with a standard phone line. The highest proportion of phone line penetration is recorded in Budapest, where 82% of the households is provided with a phone line, while this figure is only 62% in villages.

Standard phone line penetration rates show regional differences within the country. The highest proportion of phone line penetration is recorded in Central Hungary (79%), while the lowest proportion is recorded in the Southern Plains (53%). Although the number of households with a phone line is lower than last year in every region of the country, there are significant regional differences in the degree of decrease. The biggest decline is found in the Southern Plains, where the number of households with a phone line decreased by 16% from last year (in relation to such households this is a decrease of 10%). The smallest decline in the number of households with a phone line is recorded in Central Transdanubia and in Central Hungary.

Proportion of households with a standard phone line, according to regions (%)

```
Proportion of households with a standard phone line, according to regions (%)

<table>
<thead>
<tr>
<th>Region</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Plains</td>
<td>53</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>Northern Plains</td>
<td>64</td>
<td>67</td>
<td>70</td>
</tr>
<tr>
<td>Northern Hungary</td>
<td>62</td>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>Southern Transdanubia</td>
<td>62</td>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>Western Transdanubia</td>
<td>71</td>
<td>73</td>
<td>79</td>
</tr>
<tr>
<td>Central Transdanubia</td>
<td>73</td>
<td>75</td>
<td>79</td>
</tr>
<tr>
<td>Central Hungary</td>
<td>73</td>
<td>75</td>
<td>79</td>
</tr>
</tbody>
</table>
```

It is also noticeable that while mobile phone is more popular in young age groups, standard phone usage characterizes older users: in households with a head in the youngest age group (18-
29 years) 32% has a standard phone line, and this proportion gradually increases to reach 75% in the oldest group (60 years or above).

Proportion of households with a standard phone line, according to the age of the household's head (%)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-29 years</td>
<td>32</td>
</tr>
<tr>
<td>30-39 years</td>
<td>55</td>
</tr>
<tr>
<td>40-49 years</td>
<td>67</td>
</tr>
<tr>
<td>50-59 years</td>
<td>70</td>
</tr>
<tr>
<td>60 years and older</td>
<td>75</td>
</tr>
</tbody>
</table>
Other info-communication and multimedia tools

Most of the other info-communication and multimedia tools spread during last year, but only slightly. The only exception is DVD player whose penetration doubled from last year: in 2004, 17% of Hungarian households own one.

Color television proved to be the most widespread among examined info-communication tools: it can be found in almost every household. Two thirds of households have satellite or cable for receiving cable television transmission, 56% of households own a video tape, and 38% have hi-fi equipment: the penetration of these two tools did not change from last year.

![Proportion of households with other info-communication tools](chart)

game console was not included yet in the WIP survey in 2003.
Internet access at home

Home access to Internet is a significant factor of Internet usage. This year’s survey found that 14% of Hungarian households have access to Internet, which means a proportion of 18% projected to the population over 14 years.

Internet access grows proportionally with urbanization level of settlements: while only 6% of households in villages use the Internet at home, this figure is more than two times higher in the cities (13%), and four times higher in Budapest (26%).

Proportion of households with Internet access, according to settlement types (%)

The survey recorded a lower speed of increase in each settlement type group than that between 2002 and 2003, thus the speed of increase projected to the whole country is also lower than last year. The most significant slowing of penetration was measured in Budapest, where the expansion in the number of households with Internet access is only 2%, which is only a 8% increase from last year, opposed to an increase of 50% between 2002 and 2003. Proportion of households with Internet access in county towns and other cities gained 3-4%, while it remained stable in villages. Hence while cities and county towns seem to slowly join up to Budapest (or at least they are approaching it by their higher speed of increase), villages become more and more menaced by the danger of breaking off.

Income of the household remained as significant as ever with respect to Internet access. Expressed in percents, this means that the speed of increase in the number of households with Internet access is the highest in the top income quintile (5%), thus we find almost three times more households with Internet access in this group than in the following income quintile. The
second, third and fourth income quintiles show an increase of 2 percents from last year in the number of households with Internet access, while this proportion decreased by one percent in the lowest income quintile.

Proportion of households with Internet access, according to the households’ income (%)

Though these figures have not been measured last year, it could still be useful to examine the relation between home access to Internet and the educational level of the head of the household. Internet access is twice as frequent in households with a head who completed higher education than in households where the head has only completed secondary education. In case of households with a vocational school degree, the home Internet access is half as frequent as among households with a head who completed secondary school. Finally, Internet access in households with a head with an elementary school degree is four times less frequent than in households with a vocational school degree.
Home Internet access - types and expenses

Most households with Internet access still use a modem connection (40%) through standard phone line. On the other hand, broadband connection is gaining space: while the proportion of modem connections lost 10 percents and ISDN 2 percents from last year, the number of ADSL connections grown from 14% to 25%, and the proportion of households connecting to Internet by cable television or other broadband cable is also increasing. Internet connection via mobile phones or other technologies stabilized at around 3-4%.

Internet connection technology
(among households with Internet access, %)
The average monthly cost of home Internet access (including telephone cost in case of phone connection) is around 7.292 Forints. The amount of money households spend on Internet access does not vary significantly according to economic or demographic indices.

Computer usage

Penetration, diffusion

40% of Hungarian population over 14 years use a personal computer more or less frequently – this figure is only one percent higher than the one measured last year. PC users reported a relatively high intensity of computer usage: 62% of them use it daily, and 89% use it at least once a week.

Examining PC usage in age groups shows that it is in the youngest age group that computer usage is the most popular: almost all people under 17 years use a PC. Proportion of PC users continuously decreases in older age groups, and falls to 5% in the oldest group.

![Proportion of PC users according to age group, %](image)

Computer usage shows equally dramatic differences according to educational level groups. Proportion of PC users significantly decreases from higher to lower educational groups: while 79% of those who completed higher education use a computer, while this figure is not higher than 24% among those who only completed elementary school.
Proportion of PC users in educational level groups, %

It is worth examining the relation between computer usage and economic activity. Not surprisingly, the proportion of computer users is very high among students, but very low among pensioners. By restricting the examined groups to working people, we find that entrepreneurs and employees show similar computer usage measures: the number of regular PC users is slightly above 50% in both categories.

Proportion of PC users according to economic activity, %

Scenes of PC usage and computer activities

The most typical scenes of PC usage are work, school and home. Computer usage at home is prominent: 73% of the users use a PC at home, and many of them do it at their friends’ or acquaintances’ home. Public access points seem to be less popular: only 9% use a computer regularly at libraries, and 3% at public access points.
Among different computer activities, the most frequent one is opening a program: the vast majority (85%) the users performed it in the last 12 months. Copying is less widespread, but it was still performed by half of the users. The less frequent activity is programming, but regarding how specialized this operation is, 11% should not be considered as a low figure.
PC-usage competences

When examining computer usage, digital literacy, i.e. computer usage competence is an important outline. To find out which level of digital literacy users represent, we can apply both objective and subjective measures. Objective measures cover data such as 60% of the users have ever completed a computational formation, including computer studies at school. An other objective measure is that 6% of PC users have passed the ECDL exam (European Computer Driving License).

It also illustrates Hungarian users’ digital literacy that 74% of them are able to use any kind of office software at some level.

Subjective measures reflect how the users themselves consider their digital competence, how self-confident they are in this respect. Similarly to past years, this question has been included in our survey. As the figure below shows, the number of definitely self-confident users is relatively low. Moreover, there is a steady decline in the proportion of those who are satisfied with their competence.

How would you describe your competence as a computer user? 2002-2003-2004

(Proportion of the answers among computer users, %)

In parallel to this phenomenon, there is a rapid growth in the number of people who consider their competence as explicitly poor.
Internet usage

WIP studies found that 29% of the Hungarian population over 14 years use the Internet. As there are several definitions of Internet users in use and it can be interpreted in different groups of the population, we hereby indicate Hungarian WIP survey results for all the combinations of widespread Internet usage and population definitions.

<table>
<thead>
<tr>
<th>Proportion of Internet users according to different definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses the Internet sum</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>14 years and older</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18 years and older</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

As the figures show, the number of Internet users is growing according to all definitions. However, not more than one fifth of the population can be classified as a regular Internet user. Internet usage varies significantly according to social groups.

The fact that Internet usage rates are higher in the population over 14 than among people over 18 leads us to conclude that the youngest age group uses the Internet more frequently than the average. Indeed, nine people out of ten go online in the age group between 14 and 17 years, while this proportion is only about 50% among people between 18 and 29 years. In the older age groups Internet usage rates gradually decline: in the generation over 60 years the proportion of Internet users is only 2%.
The degree of increase in the number of Internet users differs across age groups. The biggest increase is observed in the youngest age group (14-17 years). On the other hand, the proportion of users did not change among people over 60 years. In other age groups the degree of increase is between 4-6%.

If instead of using the answer to the question „Do you use the Internet?” as a criterion, we consider usage regularity and take someone for a user if /s/he goes online on a weekly or monthly basis, we find similar usage rates according to age groups.

Besides age, the second factor that determines Internet usage is qualification. As the figure below shows, Internet usage rate is the lowest among people who accomplished vocational school,
(moreover, there has been a fall of 1% from last year), while the highest rate – and the biggest increase – has been recorded among people with a degree in higher education. Among respondents with an elementary school degree the proportion of Internet users is 19%, which is 8% higher than among people with a vocational school degree. This difference can be explained by the fact that while most people with a vocational school do not intend to continue their studies, a major part of those with an elementary school degree are still studying – thus, their expected final school degree will be a higher one.

Proportion of Internet users according to qualification, %

<table>
<thead>
<tr>
<th>Qualification</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>elementary school</td>
<td>16</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>vocational school</td>
<td>8</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>secondary school</td>
<td>30</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>higher education</td>
<td>59</td>
<td>68</td>
<td>68</td>
</tr>
</tbody>
</table>

Economic activity is another factor that has a significant effect on internet usage. The biggest percentage of users is found among students (91%), followed by entrepreneurs and employees (37 and 36%, respectively). Proportion of internet users among pensioners is only 3%.

Digital division in Hungarian society

As observed in earlier studies, the diverse social-demographic groups of Hungarian society show significant differences with respect to the proportion of internet users. We have seen for instance that members of younger age groups, as well as those belonging to a high income or educational category are more likely to use Internet than representents of the opposite groups. The phenomenon that internet usage habits reflect differences between social groups is called digital gap or digital division.

The raw figures already reveal that this division exists in today's Hungary. The question is
double: which is the major dimension of this division, and is it a growing or a decreasing trend? To be able to answer these questions, the researchers of SIBIS elaborated a complex measure called Digital Divide Index.

Digital Divide Index (DIDIX) examines access and use of information technologies among the disadvantaged attributes of four socio-demographic variables. The index value shows diffusion rate of info-communication tools in disadvantaged groups as compared with the same rate in the whole population. Examined dimensions are gender, age, income and qualification. In the dimension of gender women are qualified as disadvantaged, with respect to age those above 50 years, with respect to income those belonging to the lowest quartile, and as to qualification, those with an elementary school degree or even less.

In order to show digital division of these disadvantaged groups, the separate index values were counted among the four dimensions. The DIDIX value is created by contracting all the indices.

Indexes can take values between 0 and 100, where 100 means that the rate measured in the given subgroup equals the one measured in the whole sample. Thus the lower the index value, the deeper the digital divide is.

The following figure indicates index values among the four dimensions as well as the overall DIDIX values for years 2001-2004.

According to DIDIX values, digital division has decreased in Hungary over the years of study, hence the overall value has grown from 34 in 2001 to 47 this year. We can also conclude that there is no significant division in the dimension of gender, as index values
almost reach the maximal 100 – thus, women’s Internet access and use practically equal the average. The dimension that generates the biggest division is qualification: this index value is not higher than 12, and it did not grow from last year at all. Age and, to a lesser but not ignorable extent, income are both serious division-generating factors.

To sum up, we can state that although digital division is reducing, it is still significantly present in today’s Hungary. It is also noticeable that index values of the most division-generating dimensions remained stable since last year.

User experience and competence

Most Internet users rate their competence as acceptable: only 14% of users ranked their ability as poor, while half of them rated themselves as good or excellent. Students, men, members of young age groups and those with a high education degree are more likely to rank their user competence above the average.

„How would you rate your competence as an Internet user?” (%)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>poor</td>
<td>14%</td>
</tr>
<tr>
<td>fair</td>
<td>36%</td>
</tr>
<tr>
<td>good</td>
<td>41%</td>
</tr>
<tr>
<td>excellent</td>
<td>9%</td>
</tr>
<tr>
<td>All</td>
<td>100%</td>
</tr>
<tr>
<td>N=</td>
<td>1082</td>
</tr>
</tbody>
</table>

The relatively slow increase in the number of Internet users explains why there are so few new users among respondents: the average duration of Internet usage is 3.5 years. Among all users, only 5% have been online for less than one year; 13% for one year, and the majority (82%) for more than one year.

Scenes of Internet usage

Internet usage at home is gaining more and more importance, as already shown in last year’s studies. In 2004, more than half of users go online at home, what makes home the most popular scene of Internet usage. However, the number of people who use the Internet at work or at
school is still high in proportion to all users. If we fuse work and school into one category (as they mutually exclude each other), they continue to be the most frequent Internet usage scene. There has been a light increase in the number of those who go online at their friends’/relatives’ homes: they make up one quarter of all users, and 7% of the overall population above 14 years. Internet usage at telecommunication houses, Internet cafes of other public access points is still less popular, and the proportion of users who go online at these places has not changed significantly from last year.
Scenes of Internet usage in proportion to the whole population (%)
Forms and functions of Internet usage

What is the Internet used for?

As in previous years, most popular online activities are sending and receiving e-mails, searching for information about products and services, and reading online newspapers or magazines. Furthermore, 21% of users download games, pictures and music on a weekly basis. Public institutions’ sites are also popular among Internet users: 18% of them visit such sites at least once a week, while other 34% do it at least once in a month. Another frequent online activity is searching for information about different educational forms, as well as downloading educational material which is a popular online activity connected to both scholar and specialized formations.

Frequency of different online activities among Internet users I. (%)
(Have you used this function of the Internet over the last three months?)

Among less widespread forms of Internet usage, we have to mention searching for information about traveling. Although this is not supposed to be an everyday routine, a relatively big number of users (35%) do it in a monthly basis.

36
Not surprisingly, most frequent online activities are browsing and searching for information. 96% of users with more than five years of experience use these functions, but even among beginners who have been online for less than two years this rate is 85%. However, the difference between experienced users and beginners is much more salient when it comes to advanced applications of the Internet. Attaching files to e-mails is performed by 77% of experienced users, but only 41% of beginners. The situation is similar in the case of online fora, chat, file exchange programs, web page construction and telephoning via the Internet.
Have you performed the following operations in the past year?
(Proportion of those who performed the operation, in different user groups %)

- Using a browser: 96%, 92%, 85%
- Sending e-mail with attached files: 77%, 62%, 41%
- Online fora, chat: 50%, 45%, 30%
- Using file exchange programs: 20%, 7%, 4%
- Creating web pages: 38%, 16%, 10%
- Telephoning through the Internet: 23%, 10%, 8%

experience ■ practice ■ beginner
Non users: why not online?

As the majority of Hungarian population do not go online, it is worthy to examine the reason they cite for not using the Internet. We posed an opened question to non-users, and coded the answers after that. As the figure below shows, the structure of answers has come through a significant rearrangement over the years of study. The number of those who cite material reasons is constantly decreasing: their proportion fell from 44% to 21% in two years. In parallel, proportion of the answer „it costs too much” is also decreasing.

Digital illiteracy is also less frequently cited as a reason for not going online: only 13% of respondents expressed that they do not use the Internet because of their lack of competence. However, in parallel to these phenomena, proportion of answers which express lack of interest is growing. In 2004, 46% of non-users said they did not use the world wide web because they did not need it – this is a 10% increase from last year. Proportion of the answer „not interested” is also high: it reaches 25%.

Why don't you use the Internet?
(Proportion of answers among non-users, %)*

*The answer „I don’t need it” is present since 2003. This new category plays a role in the salient decrease in the number of „Not interested” answers.

Other answers not indicated in the figure are marginal. In opposition to public opinion, very few non-users are kept away from the web because of their concerns about privacy or pornographic content (0,2 - 0,2%).
According to this year’s results, we cannot foresee a significant increase in the number of users, since 90% of non-users reported they were not likely to become a regular user next year, and only 7% see any chance to that happen.

Is it possible that you become a regular Internet user in one year?
(Proportion of answers among non-users)

As visible in the figure, this year’s predictions roughly correspond to the rates recorded last year.
Public opinion about the Internet

Does Internet make the world better?

Besides examining internet access and usage rates, WIP studies also concentrate on the attitude of Internet users and non-users towards the web and, more generally, technological innovations. As we have seen earlier, diffusion of technological novelties is strongly influenced by mental factors, thus investigating public opinion about technological innovations is a relevant part of diffusion studies.

First, we can state that Hungarian population has a positive attitude towards technological innovations. 65% of the respondents who formed an opinion about this question expressed that new tools like mobile phone or internet make the world a better place, while only 7% expressed the opposite. 28% said that the diffusion of these tools does not alter significantly the state of the world. As shown in the figure below, Internet users are more likely to form a favorable opinion than non-users. However, the opinion that new communication tools have a positive effect has been spreading in both groups from last year.

Do you think that new technologies like mobile phone or the Internet make the world a better place?

(Among users and non-users, %)

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>internethasználó</td>
<td>73</td>
<td>78</td>
</tr>
<tr>
<td>internethasználó</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>nem használó</td>
<td>54</td>
<td>25</td>
</tr>
<tr>
<td>nem használó</td>
<td>9</td>
<td>32</td>
</tr>
</tbody>
</table>

Opinions about the internet

Opinions of both users and non-users qualifying the internet itself did not change from last year. Thus, both groups affirmed that children may have access to content which is not appropriate for them via the web. Furthermore, users and non-users agreed that using the Internet can make
people save time – users being more likely to agree with this point. Interestingly, more non-users than users stated that internet constitutes a danger for personal data, and the proportion of those who said that people spend too much time online is also higher among non-users. Although users rather agreed with the statement that people who do not have internet access are disadvantaged, their accordance rate is still low, while non-users are even less likely to agree.

Attitudes about the Internet: how much do you agree with these statements?
(average values of answers on a five-graded scale, 5=totally agree, 1=does not agree at all)

Slightly more than half of the users said that the major part of online contents is reliable, while according to 35% of them only half of the contents is reliable. The number of those who do not trust online information at all is relatively small. Not surprisingly, most non-users said they were unable to judge the trustiness of online contents. Those of them who formed an opinion proved to be more mistrustful than users were
How much of the information on the Internet do you think is reliable and accurate?
(Proportions of answers among users and non-users, %)

User satisfaction
We can state that Hungarian internet users are generally satisfied with the internet, and their opinion has become more and more positive in the course of time. The figure below shows that after a short period of “vacillation”, the number of people totally satisfied with the internet is constantly growing from 2002.

To what extent are you satisfied with the Internet?
(5: very satisfied, 1: very unsatisfied)
By going to details, we can find that users are most satisfied with the quantity of information and the communicational possibilities provided by the internet. The most common source of discontentment is connection speed – however, we can record an amelioration from the preceding years in this regard.

How much are you satisfied with the following features of the Internet?
(average values of answers on a five-graded scale, 5=totally satisfied, 1=very unsatisfied)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Satisfaction Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet in general</td>
<td>4.2</td>
</tr>
<tr>
<td>Communicational possibilities on the web</td>
<td>4.2</td>
</tr>
<tr>
<td>Connection speed</td>
<td>3.7</td>
</tr>
<tr>
<td>Simplicity of getting information</td>
<td>4.1</td>
</tr>
<tr>
<td>Availability of products and services</td>
<td>4.0</td>
</tr>
<tr>
<td>Quantity of information</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Internet and other media

Another interesting issue is to know what role the Internet plays among other media both as a source of information and as an entertainment tool. This investigation allows for discovering the place of the Internet in users’ lives, as well as the way it transforms their media-consuming habits.

As shown in the figure below, world wide web has become a relevant source of information for users. Among them it is already one of the most important sources of information, reaching the position of television which was for a long period – and still it is, for non-users – the most significant medium in this respect.
How important are the following for you as a source of information?
(average values of answers on a five-graded scale, 5=very important, 1=not important at all)

We can also conclude from the figure that apart from television and radio, users consider different media types more important than non-users. This phenomenon is extremely salient in the case of books.

However, the internet is also conceived as a medium for entertainment. Although even users rank its importance below than that of friends, books or television, it is still more important than clubs or daily newspaper.

How important are the following for you with respect to entertainment?
(average values of answers on a five-graded scale, 5=very important, 1=not important at all)
Internet at work

According to the latest results, 64% of economically active, working population use the Internet at their working place.

The most frequent Internet activities at work are business e-mailing (performed by 68% of people who go online at work). A slightly lower rate, 58% use the Internet for browsing. Both proportions show a small increase compared to 2002 and 2003. Frequency of personal e-mailing (31%) shows a slight decline, while frequency of personal browsing (37%) remained stable over the years of study.

The most interesting issue is whether Internet affects productivity of work. The number of those who gave a positive answer has increased: the proportion of respondents who said that Internet access makes them more productive is 61%, up from 56% last year.
How did Internet access at work affect your productivity?
(Among economically active people with Internet access at work, %)

13% of employees reported that their Internet use is strictly monitored by their employers, while 9% reported similar monitoring about e-mail. A slightly higher number of employees reported occasional monitoring (15 and 13%), but the vast majority (51 and 55%) of employees did not experience any control about their Internet and e-mail usage.

Does your employer control your e-mail and Internet usage at work?
(Among employees with Internet access at work, %)
Distance working

29% of employees have used the Internet outside their working place in the last three months, thus performed some kind of distance working. The most prominent activities were searching for information (86%) and communication (75%). Connecting to remote information systems (e.g. Intranet, VPN), which represents a higher level of distance working, is far less frequent: 57% of distance workers have used such services.

Which functions of the Internet have you used for working outside your working place?

(Among economically active population, %)

<table>
<thead>
<tr>
<th>Activity</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching for business/work-related information</td>
<td>86</td>
</tr>
<tr>
<td>Connecting to the employer’s information system</td>
<td>57</td>
</tr>
<tr>
<td>Communication: downloading and sending e-mail</td>
<td>75</td>
</tr>
</tbody>
</table>
E-mailing, opinions about e-mail

Traditional forms of written communication, such as telefax or post letters are much less widespread today than e-mail and sms. As to telefax, we have to note that this way of communicating was never really popular in personal contact.

Regular Internet users use both traditional and digital communication forms more frequently than non-users, i.e. they also send more telefaxes and post letters than non-users.

<table>
<thead>
<tr>
<th>Have you sent e-mail, telefax, sms or post letter during last month?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Proportion of positive answers, %)</td>
</tr>
<tr>
<td>e-mail</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>83</td>
</tr>
</tbody>
</table>

Spam mail

57% of Internet users receive spam regularly. The quantity of such mail varies strongly among different user groups. The weekly average of “experienced” users (with more than 5 years of usage) is 14 spams, while “practiced” users (2-5 years) get 8, and beginners (less than 2 years) get only 4 of them.
Public opinion about e-mail as a form of communication remained constant during the years of study. The point most Internet users agree with is that e-mail provides an opportunity to get in touch with people they would not communicate with by traditional means. However, respondents still do not consider it embarrassing if someone does not have an e-mail address, and do not agree that managing e-mail communication takes too much time.
Opinions about e-mail
(How much do you agree with these statements? – average values of answers on a five-graded scale, 5=totally agree, 1=does not agree at all)
Electronic commerce in today’s Hungary is still doubtlessly at a starting phase, as 84% of Hungarian Internet users have never ordered any product or service on the Internet, and the proportion of those who did it in the last three months is only 8%.

The low popularity of online purchasing is well illustrated by the fact that even Internet users are very uninformed about online prices: 38% of regular users and 49% of occasional users were unable to tell whether online prices are lower or higher than prices at regular retail. Among regular users who answered this question 18% thought online prices were lower, 13% thought they were higher, and 31% said that prices were identical in both retail forms.
What is the relation of online prices to prices at regular retail stores?

Most products bought via the Internet are simple and not expensive. Among those who have already purchased a product online, 47% spends 5000 Forints or less online per month, but 21% of online buyers have spent more than 20000 Fts through the Internet.
How much money have you spent to products or services bought online?
(among those who have bought some kind of product or service online over the last months, %)

An important factor of electronic commerce is payment method. This field did not change significantly during last years: more than two thirds of transactions are performed in the regular way, i.e. products bought online are paid for on delivery. Proportion of payments by bank card or credit card is identical to the figures of the last two years.
How do you pay when buying online?
(among those who have bought some kind of product or service online over the last months, %)

The slow diffusion of modern payment methods is mostly due to security concerns: users trust less in the security of their personal data during transactions by bank card. The number of those who consider it totally secure to provide their personal data via the Internet has decreased by 7%: this year’s rate is 18%, down from 25% in 2002. The proportion of those who do not consider it safe at all is 28%.
How safe do you consider it to provide your credit card’s data when buying online?
(among those who have bought some kind of product or service online over the last months, %)

One third of respondents who have already tried online purchasing said that it reduced their purchasing in retail stores, thus this figure remained stable over the years of study.
Did buying online reduce your buying at regular retail stores?
(among those who have bought some kind of product or service online over the last months, %)

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did not reduce</td>
<td>68%</td>
<td>70%</td>
<td>69%</td>
</tr>
<tr>
<td>Reduced</td>
<td>32%</td>
<td>30%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Security and Internet use

Security risks

As we have seen in the preceding chapter, security concerns about buying online have grown in the last years. In spite of that, none of the respondents had reported an actual credit card abuse, and the quantity of abuse of personal data is also insignificant. This leads us to the conclusion that concerns about credit card abuse are due to negative information spread in both formal and informal ways. The situation of virus and spam is different, as 35% of Internet users got a virus and 46% of them got spam via the Internet last year.
Precautionary measures

Among all security measures connected to Internet, anti-virus measures are the most widespread. 45% of users have installed anti-virus software last year and 54% have performed update. On the other hand, only 28% have installed firewalls (either software or hardware), and 27% used any sort of online certification. According to the data, more experienced users are more likely to prepare against the above mentioned dangers.
Have you taken the following precautionary measures over the last three months? (Proportion of positive answers, %)

- Updated your anti-virus software?
 - Experienced: 77%
 - Practised: 72%
 - New: 64%

- Installed an anti-virus software?
 - Experienced: 69%
 - Practised: 58%
 - New: 59%

- Used any online certification like password, PIN code or digital signature?
 - Experienced: 47%
 - Practised: 35%
 - New: 19%

- Installed or updated a firewall software or hardware?
 - Experienced: 49%
 - Practised: 38%
 - New: 32%
Internet and social connections

About one third of Hungarian Internet users use the web for finding new acquaintances: 31% of them have at least one friend they got to know via the Internet, and 28% have more than one such acquaintance.

Moreover, Internet may also be used for cultivating already existing friendships: 33% of users said they have at least one friend they got to know offline, but keep in touch with via the Internet.

Nevertheless, the general opinion of users is that Internet is not a particularly efficient way of building and cultivating relationships. In a five-graded scale, they moderately agreed that it is easier to form acquaintances via the Internet. A slightly lower number of users agreed that “I keep in touch with more people since I use the Internet”, and very few users said that “people share their most intimate matters on the Internet” or “since I use the Internet I communicate more with my family and my friends”.

How firmly do you agree with the following statements?
(Average values of answers on a five-graded scale among Internet users, 5=totally agree, 1=do not agree at all)

![Graph showing the agreement levels](image)

The data shows that the web mostly advances communication between people of the same professional group: 21% of users reported that Internet makes them communicate more or much more with people from this group. Less users affirmed the same about family, friends or people
with the same hobby, and the number of those who keep in touch more with political or religious groups is insignificant.

Do you keep in touch more with people from these groups since using the Internet?

(Proportion of the answers „more” or „much more” among Internet users, %)

![Bar chart showing the proportion of answers](chart.png)
Family life and Internet usage at home

In every year of the study we examined the question how Internet access at home affects family life and minor children. As in the past three years, we found that Internet does not alter family life firmly: changes of indices related to that topic are in most cases insignificant.

The vast majority of respondents who have Internet access at home reported that their family spends about the same amount of time together since they can go online at home, while only 6% reported a decrease in the amount of time spent together. 2% affirmed they spend even more time with their family since they use the Internet at home. This point is backed by our data which shows that going online together is becoming a frequent form of family pastime: 76% of respondents with home access to the web go online together with their family at least once a week, and 47% do it almost every day.

As we can read from the figure below, 87% of users with home access to the Internet never experienced that their family members neglected them because of the Internet, and only 3% said that it happens frequently. Although proportions are roughly identical, television is slightly more frequently perceived as a reason for this kind of problems inside family.

A closer look at the effects of children’s online activities showed that going online does not jeopardize seriously neither social life nor schoolwork – at least on the parents’ opinion. 91% of adults did not observe any changes in their child’s school grades since their household acquired

How often do you feel neglected by a member of your family because /s/he watches television or goes online?
(Proportion of answers among those who have Internet access at home and live in a family, %)

A closer look at the effects of children’s online activities showed that going online does not jeopardize seriously neither social life nor schoolwork – at least on the parents’ opinion. 91% of adults did not observe any changes in their child’s school grades since their household acquired
the Internet, while 5% observed improvement, and only 2% reported that their child’s school grades got worse since then.

Similarly, 92% of parents said that their child spends exactly the same amount of time with his/her friends since /s/he is able to go online at home, and the proportion of those who reported a decrease is only 7%.

How much time do you think your child spends with his/her friends since you got Internet access at home?
(Proportion of answers among those who raise a minor child and have Internet access at home, %)

A significant rate (72%) of adults think that their child spends the right amount of time online. Moreover, further 5% thinks that /s/he should spend even more time in front of the screen. There has been a slight increase in the proportion of those who consider that their child spends too much time online: 21%, up from 17% last year. However, television continues to be the major source of discontent: almost half of parents (44%) think that their child spends too much time watching television.
How much time do you think your child spends by going online or watching television?
(Proportion of answers among those who raise a minor child and have Internet access at home, %)

Although data show that Internet did not alter home life considerably, it still had its effects. 20% of parents with a minor child and having Internet at home consider denying access to Internet as an appropriate punishment tool and uses it regularly. Thus, denial of Internet is more popular – by only one percent, though – than denial of television.

Similar consequences can be drawn from the fact that 59% of parents control their child’s Internet usage in some way (an increase from last year when 53% of parents reported so). The methods of controlling Internet usage are gradually changing across the years of study.
How do you control your child’s Internet usage? 2002-2003-2004
(Proportion of controlling methods among those who raise a minor child and have Internet access at home, %)

As the figure shows, filter programs are becoming more and more widespread as a control of children’s Internet usage, while asking for permission gradually decreases. However, the most popular way of controlling is to restrict the time the child is allowed to spend by using the Internet. It is also frequent that parents keep watch on what their children do online.
The International World Internet Project

The World Internet Project was initiated in 1999, by UCLA and the NTU School of Communications Studies in Singapore. WIP research has several characteristics that raise it to a distinguished position among the – fortunately growing number of – studies about social effects of the Internet.

• The project focuses on Internet non-users as well as users

As opposed to earlier studies which concentrated only to Internet users, one of the important novelties about WIP is that it extends the examination to non-users. This allows for the examination of the dynamics of the two groups and the passages between them, as well as for a wide comparison of the beliefs and attitudes of both groups, which may reveal the reasons of non-users for not going online.

• Longitudinal research

WIP research is not restricted to one aspect but looks at general social impacts of the Internet. For being able to do so, WIP comprehensively examines the effects of this communication technology year by year, over the course of ten years. This makes possible to track short-term and long-term changes in people’s views, habits, their relationships as well as in family life. Our analysis may also promote the development of flexible, up-to-date business or governmental strategies.

• Worldwide comparison

We conduct an international, comparative research, which allows for creating a comprehensive worldwide picture as well as comparative regional studies of the diffusion of the Internet. Variables measuring general „social state”, views about electronic technologies and the Internet and trust in different kinds of institutions are included in every national survey. Hence these values may also be compared among participating nations. Moreover, the possibility to include special questions related to particular countries is given to researchers who therefore may fulfill their scientific curiosity about such issues. Research teams participating in the survey share their experiences and ideas, as well as their latest findings at the annual WIP conference.
Sampling and weighing methods

The sample was prepared by a multiple-stage, proportionally layered probabilistic sampling method. At the first stage we collected from every county the settlements which were included in the sample. The general principle was to include Budapest, county towns, one more town and one village from each county, except for Pest county where two towns and two villages were taken into the sample. Subsequently we defined the number of inhabitants that would be included in the sample the way that proportion of inhabitants in the sample equals that of adult inhabitants of the settlement type projected to the whole adult population.

Data collection was conducted according by address-listing, with a decreasing sample method. This means that we did not make use of supplementary addresses but adjusted our method so that it could deal with the discrepancies due to addresses that predictably fall out of the sample because of denial of answer or other reasons. The scientific foundation of this system makes it widely used in international research, as opposed to the recourse to supplementary addresses which is not used in the international scene. Hence we defined a sample bigger than the necessary and expected questioners to question all the addresses. When calculating the original cardinality of the sample we took into account the probably higher proportion of falling outs in bigger settlements.

The concrete sample was created by buying an address list from Central Population Registry Office. Addresses were chosen at random, and we were given data on individuals from settlements which we determined. Our sample method is thus a probabilistic one, which ensures that consequences drawn from data collected through the sample can be generalized to the entire target group.

Questioners contacted sample people in person. They were told to visit each address at least twice, at different hours, and one of them had to be after 18h on a weekday. (Though questioners were expected to accomplish two visits, in most cases they made more than two attempts where the first two were unsuccessful.)

Out of 1594 addresses of the first wave, 835 questionnaires have been completed. This rate was 2124 out of 3863 at the second, and 980 out of 2180 at the third wave. The total cardinality of the three waves is 3939.

Distortions due to addresses falling out were corrected by weighing. Our weighing method takes into account four socio-demographic factors (gender, age, qualification and settlement type).
Therefore, the distribution of the weighed sample according to these dimensions is adjusted to
the corresponding rates of the adult population.
Presentation of participating institutes

BUTE ISTRI
ISTRI is a Technical University-based institute consisting mainly of a researcher community that is organized into a network. According to its mission statement, it explores the various fields of the developing information society studies with its researches who have multidisciplinary background in social sciences and who, in order to maintain a continuous high standard, pursue their work in workshops.
The institute supports the involvement of young researchers in its work, as it sees the new generation as possible future „reinforcements”. The institute has even developed a special work-form to help the information society research done by secondary education students.
The professional club of the institute, operating quite successfully for years by now, is the vehicle for debate and thought exchange as well as for meeting and getting to know topics and authors. More and more topics are covered thanks to the development of cooperation with individual members of the ITOK network. The Internet Society Research Days are held yearly since 2001. ISTRI is one of the Hungarian partners of the World Internet Project.

www.ittk.hu

ELTE-ITHAKA
ELTE-ITHAKA is an independent research and educational centre inside the Faculty of Social Sciences at Eötvös Loránd University. In compliance with its founders’ intentions, this research group is meant to approach current questions of Informational Age from a social scientist’s point of view. This special perception of phenomena – which can be conceived as a mix of classical sociology and today’s creative dynamic research – promotes the better understanding of current processes which relate to each other in a more and more complex way in the economical, cultural and political fields. Researchers of ELTE-ITHAKA have been actively participating in the Hungarian World Internet Project from its start.

www.ithaka.hu

TÁRKI
Social Research Centre Inc. (TÁRKI, www.tarki.hu) has 20 years of experience in several domains of empirical social sciences since its foundation in 1985 as the first private research centre in Central Europe. Over the past twenty years, the Institute has gained an international reputation for its empirical research conducted in the field of social- and market research and for
its professionally unique databank which has been made accessible to the public. TÁRKI has been performing annual data collection for the World Internet Project since 2001.

http://www.tarki.hu/research/wip/index.html